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Abstract 

In cardiology, we frequently develop machine learning 
models to predict events such as heart failure. Oftentimes, 
these events occur at low incidence in the available data, 
especially for under-represented subpopulations, which 
limits classifier performance due to class imbalance. To 
mitigate these issues, we investigate the use of synthetic 
data generation, or algorithms trained to mimic realistic 
patient data. In particular, we use synthetic data to 
augment training data for Catboost in classifying chronic 
heart failure using the University of California, Irvine 
myocardial infarction complications dataset (n = 1,700). 
Our primary metrics of interest are the mean and the 
variability of AUC and F1-Score across five-fold cross-
validation. Overall, we find modest gains in performance 
over the baseline classifier with no augmented data. 
Nevertheless, the more sophisticated generators, both with 
and without hyperparameter tuning, did not confer better 
performance than simpler methods. Furthermore, all 
methods were subject to large variability in classification 
metrics across folds. While synthetic data generation is a 
promising tool for class imbalance, more investigation is 
needed to find optimal sample sizes and settings for the 
stability of results. 
 
1. Introduction 

 
A common application of machine learning (ML) in 

cardiology is the detection and prediction of events (e.g., 
arrhythmia and heart failure). Often, it is the case that the 
available datasets for training ML models contain a low 
incidence rate of these events, which is commonly referred 
to as “class imbalance.” Class imbalance creates a scenario 
where a classifier’s performance can be biased toward the 
majority class even if the dataset is reasonably sized. In 
turn, this results in poor performance for the minority class, 
or those who are truly of interest in an adverse outcome 
prediction model [1, 2]. Furthermore, class imbalance can 
exacerbate disparities in ML performance among certain 
underrepresented subpopulations in medical datasets, such 
as women and non-whites. 

Popular methods to mitigate class imbalance include 
either undersampling the majority class or oversampling 
the minority class via the synthetic minority oversampling 
technique (SMOTE). Undersampling is usually 

undesirable for classification due to losing potentially 
valuable data points [3]. Meanwhile, SMOTE may not 
produce a diverse sample across the entire support of the 
distribution of features due to its local “nearest-neighbors” 
approach [3]. 

A new class of methods, called synthetic data 
generation (SDG), offers another potential solution to class 
imbalance. SDG refers to models, often neural networks, 
trained to create “realistic” patient records that preserve the 
original dataset’s complex multivariate distributions 
between the features [4]. The generators can then be used 
to produce additional data points to augment original 
training sets for ML algorithms. Compared to traditional 
methods, if SDG can produce higher quality and more 
diverse data, downstream ML performance in the presence 
of class imbalance should theoretically improve. 

We investigate the use of SDG, both with and without 
hyperparameter tuning, for two aims: (1) to increase 
overall ML performance by augmenting the training set 
with generated synthetic data and (2) to mitigate ML 
performance disparities by augmenting only generated 
data for certain underrepresented subpopulations. We 
utilize the University of California, Irvine Myocardial 
Infarction (MI) complications dataset as a case study [5]. 
Specifically, using features available upon hospitalization, 
we use a Catboost classifier to predict chronic heart failure 
(CHF), a binary outcome with an imbalance in both CHF 
incidence and the proportion of females in the dataset. 

 
2. Methods 
 
2.1. Dataset and Pre-processing 
 
    Our dataset contains 1,700 patients who were 
hospitalized due to an MI. 394 (23.2%) patients were 
ultimately diagnosed with CHF and 635 (37.3%) were 
female. The male and female CHF rates were 20% and 
29%, respectively. After excluding features not available 
upon hospitalization, severely imbalanced binary features 
(less than 1% incidence), highly missing features (over 
70% missing), and highly correlated features (over 70% 
pairwise Pearson correlation), we were left with 60 
features. To further decrease the feature count to prevent 
overfitting, we selected 30 clinically meaningful features 
to achieve the rule of thumb of ten events per feature [6, 
7]. These features include a mix of numerical, categorical, 
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and binary features. Please refer to the MI complications 
dataset reference for more details [5]. 
 
2.2. Synthetic Data Generators 

 
We utilize the synthetic data generators available in the 

open-source “Synthetic Data Vault (SDV)” Python library: 
Gaussian Copula (GC), Conditional Tabular Generative 
Adversarial Network (CT GAN), Copula GAN, and 
Tabular Variational Autoencoder (TVAE) [8]. Let d 
represent the number of features; for the GC method, a 
copula is a unit cube [0,1]d constructed from the marginal 
cumulative distribution functions of a multivariate 
Gaussian distribution. The latter three algorithms are based 
on generative adversarial networks (GANs), which consist 
of two submodels: the “generator” that produces synthetic 
data and the “discriminator” that attempts to discern 
whether a data point is real or synthetic [9]. The sub-
models are trained together in a zero-sum manner such that 
one model improves when the other fails. For a simple 
method to compare to SDG, we sample with replacement, 
or bootstrap sample, the original dataset as our “synthetic 
data” augmentation. 

 
2.2. Hyperparameter Tuning 

 
Within each aim, we examined whether the SDG model 

hyperparameter tuning affects the downstream classifier 
performance. Only the GAN models in SDV (CT GAN, 
Copula GAN, and TVAE) were tunable. Using each fold’s 
training set, we searched the following grid: 

• Epochs: 100, 200, 300 (SDV default: 300) 
• Dimension of generator and discriminator: 

64, 128, 256 (SDV default: 256) 
• Discriminator steps (for CT GAN and 

Copula GAN only): 1, 3, 5 (SDV default: 1) 
These values were chosen to ideally minimize the 

overfitting of the generators to the small dataset. 
The metric optimized for choosing the final 

hyperparameters was the SDV “quality score,” a score 
between 0 and 1 that quantifies how similar the generated 
data’s distributions are to the real data the generator was 
trained on. For each column in the generated data, a 
similarity score between the real and synthetic data was 
calculated: for continuous columns, one minus the 
Kolmogorov-Smirnov statistic and, for non-continuous 
columns, one minus the total variation distance. Then, 
these scores were averaged across all columns to calculate 
the final quality score. 

Ultimately, for each fold, the combination of 
hyperparameters with the best quality score will be used in 
the final generator model. We only computed quality 
scores on data generated for the entire population (i.e., not 
the female-only data) and used the best hyperparameters 
for the models in both aims one and two. The implicit 

assumption in the proposed hyperparameter tuning 
framework is that higher-quality data will improve 
downstream ML performance. Quality scores were 
reported for all methods. 

 
2.3. Classification of CHF 

 
We aim to predict the presence of CHF given the 30 

features extracted. We examine whether augmenting data 
produced by SDG to the training set will improve the area 
under the receiver operating curve (AUC) and F1-score, 
both overall (aim one) and sex-specific (aim two) when 
compared to a baseline model trained on the original 
training. To smooth over variability, we utilize five-fold 
cross-validation, stratified on CHF and sex, and report the 
average and standard deviation of the classification metrics 
across each fold. In each fold, the following is executed: 

1. Use random forest imputation to impute missing 
values in the training and testing set separately 
[10]. 

2. Using the training set and Catboost, find the 
optimal classification probability threshold based 
on the F1-score. 

3. With the optimal threshold, re-train a Catboost 
model on the training data and record the 
baseline (i.e., original data with no 
augmentation) classification metrics on the test 
set. 

4. For each generator examined: (a) train the 
generator on the training data, (b) generate the 
pre-determined number of synthetic data 
observations (see below), (c) augment the 
synthetic data to the original training set, (d) 
train the Catboost model with the augmented 
data, and (e) record test set performance. 

For our first study aim, overall performance, we double the 
training dataset by augmenting 1,300 synthetic data points, 
and for our second aim, sex-specific performance, we 
conditional sample females only and augment 500 females, 
doubling the number of females in the training set. 

 
3. Results 

 
Compared to the default hyperparameter settings, only 

CT GAN and Copula GAN improved the quality score 
with custom hyperparameters; thus, there is no 
hyperparameter-tuned TVAE model. For Copula GAN, 
across all folds, the best hyperparameters were an epoch 
count of 300, a dimension of 64, and a discriminator step 
of 5. In our results, we call this model “Copula GAN + HT” 
where HT stands for “hyperparameter tuned.” For CT 
GAN, the best hyperparameters varied across folds, with 
the epoch count ranging from 100 to 300 and dimensions 
ranging from 64 to 128. However, the discriminator step 
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was always 5. We call these models “CT GAN + HT” 
Bootstrap sampling had the highest quality score 

averaged across folds, followed by the hyperparameter-
tuned CT GAN (Table 1). The lowest average quality score 
came from the GC method. 

 
Table 1: Mean Quality Scores by Method where HT 

stands for “hyperparameter tuned” 
Method  

GC 0.72 
TVAE* 0.74 
CT GAN 0.77 
Copula GAN 0.77 
Copula GAN + HT 0.84 
CT GAN + HT 0.85 
Bootstrap 0.97 

 *TVAE + HT have the same parameters as TVAE 
 
Figure 1 presents the overall AUC and F1-score metrics 

for each generator examined. Each method has a dot 
representing the average metric across folds, while the bars 
are a result of adding and subtracting the standard 
deviation across the folds. The wider the bar, the more 
variable the results were. The red dotted line represents the 
average baseline performance of the Catboost classifier 
trained on the original data. 
 

 

 
Figure 1: Forest plots of ML performance for AUC and F1-
score score across all folds for different SDG methods. 
 

For AUC, on average, only GC showed an improvement 
but, nevertheless, had the highest variability among all 
methods that ranged into a considerable decrease in 

performance. For F1-score, on average, the highest gains 
were from GC followed by TVAE. CT GAN had the 
highest variability while TVAE had the lowest.  

Figure 2 shows the results from augmenting female-
only data. The key performance indicator is an increase in 
the female-specific metrics without a loss in the male-
specific metrics. The baseline AUC for males was better 
than that of females, while the opposite was true for F1-
score.  
 

 

 
Figure 2: A forest plot of sex-specific ML performance 
across all folds for AUC and F1-score. Blue and orange 
lines represent the female and male metrics, respectively. 
The dotted lines are the baseline performance. 
 

For AUC, GC boosted performance for both females 
and males. The next best algorithm, TVAE, could only 
provide gains for males but not females. The results, 
however, were quite variable. All other algorithms resulted 
in a performance decrease in at least one of the sexes. 
Variability was generally large for these results. For F1-
score, both TVAE and GC showed notable improvements 
in both male and female performance. Other methods did 
indeed increase female performance but at the cost of male 
performance. Female variability was comparable to the 
baseline classifier, but male variability was much higher. 
 
4. Discussion 
 

In this case study, we found that utilizing SDG modestly 
improved classification performance compared to a 
baseline model. Overall, the complexity of the method 
(i.e., GAN vs. non-GAN) had little bearing on the final 
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results. Both GC and TVAE improved overall and sex-
specific metrics, especially for F1-score – a key metric 
where there is class imbalance. Interestingly, these two 
methods had the lowest average data quality (Table 1), 
demonstrating that data quality is perhaps not directly 
indicative of downstream ML performance. This is further 
supported by the poorer performance of the 
hyperparameter-tuned models, which had the highest data 
quality scores.  

One notable issue with SDG is the variability across the 
folds, with no methods in Figures 2 and 3 having an 
unequivocal gain over the baseline classifier in any metric. 
In some cases, this variability was much larger than the 
baseline classifier’s variability. For example, the F1-score 
for males in CT GAN ranges from roughly 0.175 to 0.375 
(Figure 3). Interestingly, although we did not generate any 
male observations, the variability across folds increased 
compared to the baseline classifier. This variability could 
be ameliorated with larger sample sizes, but this fact 
motivates a discussion of the potential problems 
surrounding the use of SDG. Because SDG is ultimately an 
ML procedure, the generators benefit from larger sample 
sizes. Nevertheless, as the sample sizes rise, the baseline 
classifier’s performance also increases, and thus, the utility 
of synthetic data in the use case decreases. One may face a 
situation where the number of samples required to decrease 
the variability in the generated data to acceptable levels 
may be far above what is required for adequate ML 
performance. Even more importantly, SDG is most useful  
when the original sample size is low, but the generators 
themselves require a minimum sample size for acceptable 
performance. Once again, one could ask whether this 
sample size is more or less than the sample size required 
for adequate performance of the original classifier. 

Our work has limitations, which motivate future work. 
Firstly, this case study is only a single example, limiting 
the scope of conclusions. This same study could be 
replicated in datasets of different sizes with a varying 
number of features and types of targets (e.g., continuous). 
Due to the large computational time to run these 
generators, we were limited in the number of folds and grid 
search for meaningful hyperparameters. Furthermore, as 
opposed to using data quality, other metrics for choosing 
hyperparameters can be explored. Lastly, we did not 
compare the SDGs to other methods, such as SMOTE. 

Besides the directions already mentioned, an important 
avenue of future work is the stability of these algorithms 
under different sample sizes. Intuitively, sample sizes that 
are too low are a non-starter for training SDG algorithms 
and the variability of the resulting estimates will be large. 
Thus, the key is to establish rules of thumb for analysts that 
clarify the appropriate sample size needed to train SDGs 
themselves or pooling procedure such the data generated 
are both accurate and within a certain acceptable 
variability. Work in the area of multiple imputation of 

missing data could be relevant, particularly looking at 
“between dataset” variability [11]. 

To conclude, SDG has the potential to be a powerful 
tool in the ML arsenal, allowing a data scientist to both 
increase the size of training datasets and mitigate class 
imbalance. Nevertheless, while common sense tells us 
more data is usually better, not all data is created equal. 
The use of synthetic data may carry with it a set of nuanced 
challenges, some of which we have highlighted in this 
paper. 
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